第四十三章 看图写字(1 / 2)

 然而把文字抽离,只剩下符号本意的系统,依然存在某种超乎符号和数学外的逻辑。</p>

譬如二乘三等于六,其实也可以写成,二三相乘等于六,或者略去某个因素,单写作二三乘,二三六,六二三乘,亦无不可。</p>

这些书写尽管表达的是一种意思,但内含的是不同的思考形式。</p>

第一者可以认为是均匀地强调了每一个因素,第二者则更着重两个作为前提的客体的存在,后面几者有的着重结果,有的着重前因,有的着重于算法本身,各有差异。在后来人的猜想中,异星之物能那么快领会到李明都的话语传播的信息,即是因为他们或他们中的某个种群与地球人的思考方式是高度一致的。</p>

这又或许意味着三段论式的形式逻辑,譬如说“大前提、小前提、结论”,确是发展科学的道路上有意味的一笔。</p>

而“从左往右”在后来的分析中亦是一个值得注意的地方。人类的书写过程在历史上变化多端。首先取决于人所具有的眼睛与手的特性,其次则取决于传播信息的介质与书写的方法。譬如说虞国古代,第一种广泛流传开来的介质是竹简,那么便是按着竹子从上到下而书写。从右到左则是因为惯用右手,要防止卷起来的竹简顶住右手的写字。更早的,龟甲的从上到下的刻字,也来源于龟甲本身纹理的干扰。</p>

当时的李明都发现这异星造物的太空用显示屏幕是从左往右刷新的。它的刷新非常复杂,似乎还射出了点紫外线来,紫外线是人类看不见的线,不定型会感到不太舒服。</p>

他一度害怕会出很难的运算题。</p>

不过实际上,没有给出复杂的计算,只是点到为止,考验的是动物对于代数的认知的逐步深入。</p>

认识数字是一件有顺序的事情。</p>

以人类为例,从1开始的自然数起源于最简单的数量认识,在人类文明刚刚萌生时就已经存在了,其次是零这个抽象的自然数,差不多同时,人们发现了负数域,接着是发现包含循环小数的有理数域,往后是确定了无理数的实数域,而等到真正认识到包含了虚数的复数域时,人类文明业已踏进工业革命的大门。</p>

“1-1=”</p>

“0。”</p>

“1-3=”</p>

“-2。”</p>

这些都是简单的。</p>

加个负号,对面应该能理解。</p>

接下来有一题是:</p>

“1÷3=”</p>

答案是一个无限循环小数,非常难以表达。李明都先写“0.333…”,然后抓耳挠腮、思前想后,又补了一个“=1/3”。</p>

再接下来有一题是:</p>

“6=()*()”</p>

他刚要写二乘三,结果两个空框同步出现了2这个数字。李明都意识到这两个空框是要他填同一个数,换而言之,即是对六做开方运算。</p>

他记得答案应该是2根号2。但这个数是个无限不循环小数,他需要引入一个新的符号,但他略微还记得根号二的前几位是1.414,他就先答了“2.828…”,再引入了根号这个特别的符号。</p>