第三百六十二章数学危机?(2 / 2)

张玮,也是数学系的教授,

不但给本科生讲课,还带着研究生和博士生,属于数学系的中坚力量。

刘一辰摸了摸下巴,说道:“也许,是长得帅,你不用羡慕,羡慕不来!”

张玮只觉得,自己遭到了暴击,差点吐血。

他们这些人中,刘一辰毫无疑问是最年轻的,同时也是长得最帅的。

接下来如果说长得还有些小帅的,也就只有许晨阳,只是许晨阳年过三十,已经是中年人,肚子也起来了,变成了个油腻大叔。

其他人,都长得很一般。

说实在的,这一批青年数学家,虽然也都有在国外担任讲师的经验,但是在讲课上,专业学生听的还好,如果是非数学系的学生听他们的课,听得都会是迷迷糊糊,甚至是最好的催眠曲。

这一点,刘一辰也知道,不过并不在意。

毕竟张玮他们教的就是数学系的学生,不需要什么幽默、生动、由浅入深等等,他们只需要去培养学生的数学思维,带着学生去领悟数学的奇妙和绝美,让学生维持着对数学的好奇与热爱,那就可以了。

毕竟能够数学系的学生,数学能力不是其他院系的学生能比,他们本身的数学功底就很扎实。

“怎么样,在标准猜想上的研究,可有进展?”向着数学系走去,刘一辰问道。

“小进展,不算太出色。”张玮皱了皱眉头:“有时候我甚至怀疑,标准猜想可能并不对,到最后可能是证否!”

数学猜想就是这样,没到完全证明,谁也不知道这个数学猜想,是正面证明是对的,还是证明是否的。

“不管是哪种情况,它的价值依旧是惊人,这是一座巨大的宝藏,值得我们全力去挖掘。”刘一辰略微想了想,说道。

如果证明了标准猜想,那意味着从代数几何领域也证明了黎曼猜想。证明黎曼猜想的成就,估计是这半个世纪数学最为大的数学成果。

如果证明了标准猜想是错误的,是证否,那也就证明黎曼猜想是否定的,而那时候对于数学而言无疑是一场灾难。

在数学的历史上,曾经出现3次数学危机。

第一次数学危机,发生在公元前580~568年之间的古希腊,数学家毕达哥拉斯建立了毕达哥拉斯学派。当时人们对有理数的认识很有限,对于无理数的概念更是一无所知,毕达哥拉斯学派所说的数,原来是指证书,他们不把分数堪称一种数,而近看作两个证书之比。.

当时该学派的成员希伯索斯根据毕达哥拉斯定理通过逻辑推理发现,边长为l的政法系的对角线长度既不是整数,也不是整数的比所能表示。希伯索斯的发现直接冲击了毕达哥拉斯学派的信条,也冲击了当时希腊人的传统见解。

结果,就是希伯索斯,被投入海中淹死。

而后人为了解决这个问题,在几何学中引进不可通约量概念从而解决这个问题。

第二次数学危机则是发生在17世纪,那时候微积分诞生后,由于推敲微积分的理论基础问题,数学界出现混乱局面。微积分在理论上存在矛盾的地方,无穷小量是微积分的基础概念之一。

微积分的主要创始人牛顿在一些典型的推导过程中,第一步用了无穷小量作分母进行除法,当然无穷小量不能为零;第二步牛顿又把无穷小量看作零,去掉那些包含它的项,从而得到所要的公式,在力学和几何学的应用证明了这些公式是正确的,但它的数学推导过程却在逻辑上自相矛盾。

焦点是:无穷小量是零还是非零?如果是零,怎么能用它做除数?如果不是零,又怎么能把包含着无穷小量的那些项去掉呢?

这场数学危机,直到19世纪,柯西详细而有系统的发展了极限理论。柯西认为把无穷小量作为确定的量,即使是零,都说不过去,它会与极限的定义发生矛盾。无穷小量应该是要怎样小就怎样小的量,因此本质上它是变量,而且是以零为极限的量,至此柯西澄清了前人的无穷小的概念,而且把无穷小量从形而上学的束缚中解放出来,从而第二次数学危机才基本解决。

第三次数学危机,uu看书则是出现在19世纪末,当时不列颠数学家罗素把集合分成两种。但是推敲的时候,形成了罗素悖论:s由一切不是自身元素的集合所组成,那s属于s吗?

用通俗一点的话来说,小明有一天说:“我永远撒谎!”问小明到底撒谎还是说实话。罗素悖论的可怕在于,它不像最大序数悖论或最大基数悖论那样涉及集合高深知识,它很简单,轻松摧毁集合理论!

为了解决这场数学危机,数学家们积极寻找解决的办法,其中之一是把集合论建立在一组公理之上,以回避悖论。首先进行这个工作的是德国数学家策梅罗,他提出七条公理,建立了一种不会产生悖论的集合论,又经过德国的另一位数学家弗芝克尔的改进,形成了一个无矛盾的集合论公理系统。即所谓zf公理系统,直到此时,这场数学危机到此才缓和下来。

而如果标准猜想被证否,将会引起第四次数学危机,很多以前被认为是对的理论,都将被面临着推倒重建。

当然,从历史的发展来看,出现数学危机并非一定坏事。因为在解决危机的过程中,本身会诞生一系列伟大的数学成果,而这本身就是数学发展的动力所在。